
CS60, Lab 1: A Custom TCP Protocol Client via Berkeley Sockets

Sergey Bratus, Spring 2017

Date due: Solutions to this lab will be due on Thursday April 13 before class.

Platform: Your solutions must compile and run on CS Unix systems.

Submission: Your solutions must be submitted by checking them into the CS department LabGit system
at https://gitlab.cs.dartmouth.edu/. Create an account for yourself by navigating to that page and
following instructions; then create a project called cs60. Create a directory in it called lab1 and work there.
Give access to your project to your section’s grader and TAs (they must be able to see your code to grade
it!)

There is a server running at the host cs60.cs.dartmouth.edu, on TCP port 5050. When queried according
to the protocol described below, it returns information about a US state by its US postal two-letter code.

Write a C program that sends properly formatted queries and displays the returned information.

Example output (for the meaning of constants, see protocol specification below):

$ ./tcpcli nh 1

New Hampshire

$ ./tcpcli nh 2

Concord

$ ./tcpcli nh 4

Live free or die

$ ./tcpcli tx 1

Texas

$ ./tcpcli tx 2

Austin

$ ./tcpcli tx 3

December 29, 1845

$ ./tcpcli ab 3

Error received: No such state: ab

$ ./tcpcli tx 6

Error received: No such opcode: 6

(In this example, the address and port of the server are hard-coded in the program. This cannot be
allowed in a real-world tool, but will save you some coding around C strings.)

The protocol: The following opcodes are implemented: 1 for the name of the state, 2 for its capital, 3 for
the date when it officially became a state, 4 for the state motto, and 5 for the state flag (as a GIF).

The protocol (version 1) consists of queries and responses, one per connection:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version=1 Opcode State code
}

Query

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version=1 Status code Payload length (high bytes)

Payload length (low bytes)
Response Header

{
Payload

. . .

Important: Your code should not crash no matter what response(s) it receives, even illegal ones! The
server may be evil, or its response(s) could be spoofed. We will test your code with evil invalid responses.



Notes:

• You will find some captured exchanges between a client and a server in sample-queries.pcap. Find out
from this capture which status codes are legal and what they mean. Handle the responses accordingly.

• The byte order of the 4-byte Payload length field is big-endian, the standard network order for multi-
byte integer fields.

• Note that the 4-byte Payload length field is not aligned at a 4-byte boundary. This is very rare in
actual protocols, and is not good design practice!

Most compilers, seeing two chars followed by an unsigned int in a struct definition, will quietly
insert two unused padding bytes when compiling this struct, so that the 4-byte integer would be
aligned properly, at 4-byte boundary, counting from the struct’s beginning. This will break processing
packets, which have no extra filler bytes.

So in order to parse this protocol correctly, you need to tell the compiler to not insert the padding. If you
want to use an int in your structure definition, you’ll have to use GCC’s __attribute__((packed)).

• Although most opcodes bring back a short response, the state flag GIF can be quite large. You will
need to malloc the space for it. Be careful: many protocol implementations introduced bugs at that
point!

Terms and conditions: You are allowed to use any externals materials, printed or electronic. You are
allowed to discuss problems and technical/C tricks, but the code you submit must be your own: you are not
allowed to copy solutions from other students. Abide by the Honor Code; if in doubt, ask.

Late submissions: Throughout the course, you will get two free extensions for a late submission, each
of 48 hours after a deadline. Once you’ve used these up, you will lose 10% points of credit for each late
assignment, for each late day.


